Username :
Password :
           
Taxon ID: 789 Total records: 39,143

Acropora acuminata

Classification

Kingdom Animalia (COL)
Phylum Cnidaria (COL)
Class Anthozoa (COL)
Order Scleractinia (COL)
Family Acroporidae (SLB)

Taxonomy

Genus Acropora Reference
SubGenus Vernacular Name
Species acuminata IUCN Threat Status-Year Vulnerable, 2014
SubSpecies Nat'l Threat Status-Year Not Evaluated, 2000
Infraspecies Reason for Change
Infraspecies Rank CITES
Taxonomic Group Anthozoans Native Status Native
Scientific Name Author (Verrill, 1864) Country Distribution Cambodia
Citation Description Geographic Range [top] Range Description: This species is widespread and occurs in the Red Sea, the northern Indian Ocean, the central Indo-Pacific, Australia, Southeast Asia, Japan and the East China Sea, and the oceanic west Pacific. It was reported from Chagos by Wallace (1999). Countries occurrence: Native: American Samoa; Australia; British Indian Ocean Territory; Cambodia; Djibouti; Egypt; Eritrea; Fiji; French Polynesia; Guam; India; Indonesia; Israel; Japan; Jordan; Kiribati; Malaysia; Maldives; Marshall Islands; Mauritius; Micronesia, Federated States of ; Myanmar; Nauru; New Caledonia; Northern Mariana Islands; Palau; Papua New Guinea; Philippines; Réunion; Samoa; Saudi Arabia; Seychelles; Singapore; Solomon Islands; Sri Lanka; Sudan; Taiwan, Province of China; Thailand; Tokelau; Tonga; Tuvalu; United States Minor Outlying Islands; Vanuatu; Viet Nam; Wallis and Futuna; Yemen FAO Marine Fishing Areas: Native: Indian Ocean – eastern; Indian Ocean – western; Pacific – western central; Pacific – northwest; Pacific – southwest; Pacific – eastern central Additional data: ? Lower depth limit (metres): 20 ? Upper depth limit (metres): 5 Range Map: Click here to open the map viewer and explore range. Population [top] Population: This species is widespread, but uncommon. This species is sparsely distributed on Pacific reefs, but may be very common on reefs of the Indonesian archipelago (Wallace 1999). There is no species specific population information available for this species. However, there is evidence that overall coral reef habitat has declined, and this is used as a proxy for population decline for this species. This species is particularly susceptible to bleaching, disease, and other threats and therefore population decline is based on both the percentage of destroyed reefs and critical reefs that are likely to be destroyed within 20 years (Wilkinson 2004). We assume that most, if not all, mature individuals will be removed from a destroyed reef and that on average, the number of individuals on reefs are equal across its range and proportional to the percentage destroyed reefs. Reef losses throughout the species range have been estimated over three generations, two in the past and one projected into the future. The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Total longevity is not known, but likely to be more than ten years. Therefore any population decline rates for the Red List assessment are measured over at least 30 years. See the Supplementary Material for further details on population decline and generation length estimates. [Get Adobe Reader] For further information about this species, see Corals_SupportingDoc.pdf. A PDF viewer such as Adobe Reader is required. Current Population Trend: Decreasing Additional data: ? Population severely fragmented: No Habitat and Ecology [top] Habitat and Ecology: This species occurs on shallow reefs. It also is found in turbid or clear water on upper or lower reef slopes. It is found from 5-20 m depth (Lovell pers. comm.). Acropora acuminata likely spawns annually in September in French Polynesia (Carroll et al. 2006). General genus information: throughout its range, Acropora can be found on any stretch of reef and is often the dominant coral, especially along the reef front. Staghorn and plate forms flourish in sheltered areas, whereas clusters and semi-massive types can withstand more exposed conditions. Species that occur from the reef top to the reef slope become gradually more flattened with depth (Wood 1983). Systems: Marine Threats [top] Major Threat(s): An open branching table growth forms and therefore susceptible to crown-of-thorns starfish. Presumed susceptible to bleaching in Fiji (Lovell pers. comm.). Members of this genus have a low resistance and low tolerance to bleaching and disease, and are slow to recover. Susceptible to wave damage (Richards pers. comm.). Acanthaster planci, the crown-of-thorns starfish, has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). Crown-of-thorns starfish (COTS) (Acanthaster planci) are found throughout the Pacific and Indian Oceans, and the Red Sea. These starfish voracious predators of reef-building corals, with a preference for branching and tabular corals such as Acropora species. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts of COTS has become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area. In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse. Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities. The severity of these combined threats to the global population of each individual species is not known. Conservation Actions [top] Conservation Actions: All corals are listed on CITES Appendix II. Parts of the species’ range fall within Marine Protected Areas. Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity. Citation: Richards, Z.T., Delbeek, J.T., Lovell, E.R., Bass, D., Aeby, G. & Reboton, C. 2014. Acropora acuminata. The IUCN Red List of Threatened Species 2014: e.T132940A54164079. http://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T132940A54164079.en. Downloaded on 12 September 2018. Disclaimer: To make use of this information, please check the . Feedback: If you see any errors or have any questions or suggestions on what is shown on this page, please provide us with feedback so that we can correct or extend the information provided
Source

Images

         

Additional Info

Synonyms


To Manage Synonyms for Acropora acuminata, click this link: Synonyms.
No Synonym records in database.
Common Names


To Manage Common Names for Acropora acuminata, click this link: Common Names.
Localities


To Manage Localities for Acropora acuminata, click this link: Localities.
No Locality records in database.
Species Record Updated By: Carlos Aurelio Callangan